skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Padhi, Roshni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Household smart devices – internet-connected thermostats, lights, door locks, and more – have increased greatly in popularity. These devices provide convenience, yet can introduce issues related to safety, security, and usability. To better understand device owners’ recent negative experiences with widely deployed smart devices and how those experiences impact the ability to provide a safe environment for users, we conducted an online, survey-based study of 72 participants who have smart devices in their own home. Participants reported struggling to diagnose and recover from power outages and network failures, misattributing some events to hacking. For devices featuring built-in learning, participants reported difficulty avoiding false alarms, communicating complex schedules, and resolving conflicting preferences. Finally, while many smart devices support end-user programming, participants reported fears of breaking the system by writing their own programs. To address these negative experiences, we propose a research agenda for improving the transparency of smart devices. 
    more » « less
  2. Despite rapid advancements in authentication technologies, little user testing has been conducted on the various authentication methods proposed for smart homes. Users’ preferences about authentication methods may be affected by their beliefs in the reliability of the method, the type and location of devices for which they must authenticate, the effort required for successful authentication, and more. In this paper, we provide insight into users’ concerns with these methods through a 46-participant user study. In particular, we seek to understand users’ preferences towards different authentication methods in terms of the perceived security and usability implications of each method. 
    more » « less
  3. Computing is transitioning from single-user devices to the Internet of Things (IoT), in which multiple users with complex social relationships interact with a single device. Currently deployed techniques fail to provide usable access-control specification or authentication in such settings. In this paper, we begin reenvisioning access control and authentication for the home IoT. We propose that access control focus on IoT capabilities (i. e., certain actions that devices can perform), rather than on a per-device granularity. In a 425-participant online user study, we find stark differences in participants’ desired access-control policies for different capabilities within a single device, as well as based on who is trying to use that capability. From these desired policies, we identify likely candidates for default policies. We also pinpoint necessary primitives for specifying more complex, yet desired, access-control policies. These primitives range from the time of day to the current location of users. Finally, we discuss the degree to which different authentication methods potentially support desired policies. 
    more » « less